
Exceptional Handling

Introduction

An exception is an event that occurs during the execution of a program that disrupts the

normal flow of instructions. Many kinds of errors can cause exceptions-­­-­­problems ranging

from serious hardware errors, such as a hard disk crash, to simple programming errors,

such as trying to access an out-­­of-­­ bounds array element. When such an error occurs

within a Java method, the method creates an exception object and hands it off to the

runtime system. The exception object contains information about the exception, including

its type and the state of the program when the error occurred. The runtime system is then

responsible for finding some code to handle the error. In Java terminology, creating an

exception object and handing it to the runtime system is called throwing an exception. The

point at which the throw is executed is called the throw point.

Once an exception is thrown, the block in which the exception is thrown expires and

control cannot return to the throw point. Thus Java uses the termination model of

exception handling rather than the resumption model of exception handling. It is also not

possible to return to the throw point by issuing a return statement ina catch handler.

Following are some exceptions that can be generated by java statements.

 ArithmeticException

 NumberFormatException

 ArrayIndexOutOfBoundsException

 FileNotFoundException

 IOException

Syntax of Exceptional Handling

The basic concepts of exception handling are throwing an exception and catching it.

Throws

exception

objects

try{

//statement

}

catch(ExceptionType e)

{

//statement

}

Java uses a keyword try to preface a block of code that is likely to case an error condition

and throws an exception. A catch block defined by the keyword catch catches the

exception thrown by the try block. An exception cannot access objects defined within its

try block because the try block has expired when the handler begin executing. It is

possible to write the multiple catch blocks. But it is to be noted that the handler that

catches a subclass object should be placed before a handler that catches a superclass

object. If the superclass handler were first, it would catch superclass objects and the

objects of subclasses of the superclass as well.

finally Block

The final step in setting up an exception handler is providing a mechanism for cleaning

up the state of the method before (possibly) allowing control to be passed to a different

part of the program. You do this by enclosing the cleanup code within a finally block. The

runtime system always executes the statements within the finally block regardless of

what happens within the try block. This block is optional and it is the preferred means

for preventing resource leaks.

try{

//statements

}

catch(ExceptionType e)

{

//statements

}

finally{

//statement

}

throws Clause

A throws clause lists all the exceptions that can be thrown by a method.

The types of exception that are thrown by a method are specified in the method

definition with a throws clause. A method can throw objects of the indicated classes, or it

can throw objects of subclass.

void function()throws ExceptionType1, ExceptionType2

{

//statement

}

Creating our own Exception

The following program illustrates the creation of own exception.

Throwable

Exception

MyException

// TestMyException.java

class MyException extends Exception{

MyException(String msg){

super(msg);

}

}

//-­­

class TestMyException{

public static void main(String[] args){

int x = 0;

x = Integer.parseInt(args[0]);

try{

if(x<0){

throw new MyException(“Negative Number.”);

}

else{

//process with x variable.

}

}

catch(MyException me){

System.out.println(me.getMessage());

}

}

}

	Exceptional Handling
	Syntax of Exceptional Handling
	Throws exception objects
	finally Block
	throws Clause
	Creating our own Exception

